Integer solutions using coefficient method

Suppose there are 20 intermediary stations between two stations A and B. A train can stop at 3 of these stations but there must be minimum 3 stop between any two consecutive stoppings. In how many ways the train can reach its destination.

To solve questions of these type, we should learn a important method called coefficient method.

The number of non - negative intezer solutions for the equation $x_1 + x_2 + x_3 + \dots + x_r = n$ is the number of ways of distribution n identical things among r persons. , when each person can get zero, one or more things.

This is nothing but Coefficient of x^n in $[1+x+x^2+...x^n]^{-r}$

The terms in the bracket are in geometric progression with common ratio of x. And they are (n+1) terms. Applying the geometric progression sum rule

= Coefficient of
$$x^n$$
 in $(\frac{1-x^{n+1}}{1-x})$

= Coefficient of
$$x^n$$
 in $(1-x^{n+1})^r(1-x)^{-r}$

In the first expression,
$$[1+{}^{r}C_{1}x^{n+1}+{}^{r}C_{2}(x^{n+1})^{2}+...]([x-x)^{-r})^{-r} = (1-x)^{-r}$$

[first term in the first expression only gives a power of n, all other terms have powers are in the multiples of n+1]

= Coefficient of
$$x^n$$
 in $(1+x+x^2+x^3+\dots)$

$$= (n+r-1) C_{r-1}$$

How to apply the above formula:

$$(1-x)^{-18} = 1 + {}^{18}C_1x + {}^{19}C_2x^2 + {}^{20}C_3x^3 + \dots \infty$$

The coefficient of x^3 will be calculated by using the formula = $^{(n+r-1)}$ C_{r-1} = $^{(3+18-1)}$ C_{18-1} = 20 C_{17} = 20 C_{3}

1. Find the number of positive number of solutions of x + y + z + w = 20 (a) if "0" is allowed (b) if "0" is not allowed.

This equation is nothing but distributing 20 similar articles to 4 persons. Here n = 20 and r = 4

Applying the formula (n+r-1) $C_{r-1} = 20+4-1$ $C_{4-1} = 23$ $C_3 = 1771$.

If 0 is not allowed, the let us give one article each to x, y , z , w. Now assume $x = x^1 + 1$, $y = y^1 + 1$, $z = z^1 + 1$, $w = w^1 + 1$

So our equation becomes, $(x^1 + 1) + (y^1 + 1) + (z^1 + 1) + (w^1 + 1) = 20$

Now x^1, y^1, z^1, w^1 can take zero.

So $x^1 + y^1 + z^1 + w^1 = 16$ and number of intezer solutions for this equation become

$$(n+r-1)$$
 $C_{r-1} = 16+4-1$ $C_{4-1} = 19$ $C_3 = 969$

Note: When we give r articles each one to r persons we left with (n-r) articles. Now distributions these articles to r

$$\text{persons} = ^{(n-r)+r-1} \quad C_{r-1} \ = ^{n-1} \ C_{r-1}$$

If x, y, z, w are graeter than equal to 1, we apply above formula.

2. How many integral solutions exist for x + y + z + w = 29 where $x \ge 1, y \ge 1, z \ge 3$ and $w \ge 0$

Sol:
$$x + y + z + w = 29$$

Take
$$x = x^1 + 1$$
, $y = y^1 + 1$, $z = z^1 + 3$

Substituting these values in our equation makes it as $(x^1 + 1) + (y^1 + 1) + (z^1 + 3) + w = 29$

$$x^1 + y^1 + z^1 + w = 23$$

Number of intezer solutions for the above equation = $^{(n+r-1)}$ $C_{r-1} = ^{23+4-1}$ $C_{4-1} = ^{26}$ $C_3 = 2600$

3. How many integral solutions are there to the system of equations a+b+c+d+e=20 and a+b=15 where "0" is allowed.

Sol: a+b+c+d+e = 20 ----(1)

$$a + b = 15 ----(2)$$

From the above two equations, c+d+e = 5 ----(3)

Number of intezer solutions for (2) is $^{15+2-1}$ $C_{2-1} = ^{16}C_1 = 16$ and for (3) is $^{5+3-1}$ $C_{3-1} = ^7C_2 = 21$

So total solutions are $16 \times 21 = 336$

4. Find the number of intezer solutions for the equation x + y + 4t = 20

Sol: The values for 4t are 0, 4, 8, 12, 16, 20

By substituting the above values in the given equation, we get x + y + z = 20, x + y + z = 16, x + y + z = 12, x + y + z = 16, x

$$= 8, x + y + z = 4, x + y + z = 0$$

Now the solutions for the above equations are ${}^{20+3}$ $C_{3-1} = {}^{22}C_2$, ${}^{16+3-1}$ $C_{3-1} = {}^{18}C_2$, ${}^{12+3-1}$ $C_{3-1} = {}^{14}C_2$,

$$^{8+3-1}$$
 $C_{3-1} = {}^{10}C_2$, $^{4+3-1}$ $C_{3-1} = {}^{6}C_2$, and 1

So total solutions = ${}^{22}C_2$, ${}^{18}C_2$, ${}^{14}C_2$, ${}^{10}C_2$, ${}^{6}C_2$ = 231 + 153 + 91 + 45 + 15 + 1 = 536

5. There are 20 intermediary stations between two stations A and B. A train can stop at 3 of these stations but there must be minimum 3 stop between those intermediary stoppings. In how many ways the train can reach its destination.

$$\text{Sol: } A, S_1, S_2, \ldots, S_K, \ldots, S_L, \ldots, S_M, \ldots, S_{20}, B$$

Assume that there are P stations between A and S_K , Q stations between S_K and S_L , R stations between S_L and S_M and S stations between S_M and B.

Now there must be 3 stoppings between S_K, S_L, S_M but there need not be any stopping between A and the first intermediry and B and the last intermediary stations.

This gives us, P + Q + R + S = 17 (As we have to substract 3 stations from the sum of intermediary stations)

Here
$$P \ge 0$$
, $Q \ge 3$, $R \ge 3$ and $S \ge 0$

Substituting
$$Q = Q^1 + 3$$
 and $R = R^1 + 3$ we get $P + Q^1 + R^1 + S = 11$

Now number of intezer solutions for this equation = $^{11+4-1}$ $C_{4-1} = ^{14}C_3$

Integer solutions when an integer has some minimum and maximum limit:

We have seen already that, how to find integer solutions x + y + z + w = 20 where x, y, z, w may take values from 0 to 20. But what if when x, y, z, w has a minimum of 3 and maximum limit of 10. ie., We may not substitute values more than 10 in this equation. So how do we attempt to solve this equation?

Suppose, we have n similar articles may be distributed to 1 person. In how many ways we can distribute 3 articles to this person? In how many ways we can distribute 5 articles to this person? In how many ways n articles to be distributed to this person?

For all above questions, the answer is 1 as all articles are similar there is only 1 ways to choose, 2, 5, n articles from n articles

So number of ways of distributing K articles to 1 person is the cofficient of $x^k = 1 + x + x^2 + x^3 + \dots + x^n$ which is 1.

Now assume He will get a minimum of 3 and maximum of 6, then we have to consider this equation. $x^3 + x^4 + x^5 + x^6$

6. How many integers between 1 to 1000000 have the sum of the digits 18?

Sol: Any number between 1 to 10000000 has 7 digits. Let us say they are $a_1, a_2, a_3, \dots, a_7$. Now $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = 18$

Here these variables take a minimum value of 0 but a maximum value of 9. 18, 0, 0, 0, 0, 0, 0 is a solution of the above but this is violating our condition as all the digits are single digit numbers of maximum 9

We have to consider, x^{18} coefficient in the expansion of $(x^0 + x^1 + x^2 + x^3 + x^4 + \dots + x^9)^6$

The required number is x^{18} coefficient in the expansion of $(\frac{I-x^{10}}{1-x})$

 x^{18} coefficient in the expansion of $(1-x^{10})^{-6}(1-x)$

 x^{18} coefficient in the expansion of $(1^{-6}C_1x^{10}+...)(1-x)^{-6}$

 x^{18} coefficient in the second expression multiplied by 1 will give us one x^{18} and x^{8} coefficient in the second expression multiplied by x^{10} will give us another x^{18} coefficient.

= Coefficient of $x^{18}\,$ in $(1-x)^{-6}\,$ - $^6C_1.$ Coefficient of $x^8\,$ in $(1-x)^{-6}\,$

= ${}^{6+18-1}$ C₆₋₁ ${}^{-6}$ C₁. ${}^{6+8-1}$ C₆₋₁ = 23 C₅ ${}^{-6}$. 13 C₅ = 25927

7. In how many ways can we get a sum of 12 throwing 3 dice.

Sol: A single dice shows from 1 to 6. So we have to find the integer solutions for A + B + C = 12 where A, B, C represent the numbers of dice subject to the condition that they take values form 1 to 6.

So we have to find coefficient of x^{12} in the expansion $(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)^3$

- = Coefficient of x^{12} in $x^3(1+x+x^2+x^3+x^4+x^5)^3$
- = Coefficient of x^9 in $(\frac{1-x^6}{1-x})$
- = Coefficient of x^9 in $(1-x^6)^3(1-x)^{-3}$
- = Coefficient of x^9 in $(1-{}^3C_1x^6+{}^3C_2x^{12}\ldots)(1-x)^{-3}$

Required coefficient is coefficient of x^9 in $(1-x)^{-3}$ - 3C_1 . Coefficient of x^3 in $(1-x)^{-3}$

=
$$^{9+3-1}$$
 C₃₋₁ - 3. $^{3+3-1}$ C₃₋₁ = 11 C₂ - 3. 5 C₂ = 25

8. Find the number of non negitive integer solutions of the inequality $x + y + z \le 20$

Sol: We add another variable K to this equation to make it an equality

Now x + y + z + K = 20 where K can take any value from 0 to 20 so that we get different solutions for the above equation from 20 to 0.

Now number of solutions for the above equation = ${}^{(n+r-1)}$ $C_{r-1} = {}^{20+4-1}$ $C_{4-1} = {}^{23}C_3$

9. If 3 dice are rolled, The number of ways so that the sum of the numbers on them is atleast 9 is

Sol: We first consider that the maximum sum on the dice is 8.

Now A + B + C \leq 8

Add a variable K to this equation to make it an equality

A + B + C + K = 8 Subjected to the condition A, B, C takes values from 1 to 6 and K take any value from 0 to 8 for the sum of the numbers ranges from 8 to 0

We have to find the coefficient of $x^8\,$ in

AMM THE ROLL OF COME